Asymmetric Synthesis Using Chiral Sulfinyl Groups

Yiqian Lian Department of Chemistry Michigan State University

OUTLINE

- I. Introduction
- II. Some Examples of Chiral Sulfoxides in Asymmetric Reactions
- **III. Asymmetric Heck Reaction Using Chiral Sulfoxides**
- **IV. Asymmetric Synthesis Using Chiral Sulfinimines**
 - a) α -Branched and α , α -Dibranched Amines
 - b) $\alpha\text{-}$ and $\beta\text{-}Amino$ Acids
 - c) Aziridines
 - d) $\alpha\text{-}$ and $\beta\text{-}Aminophosphonic Acids}$
- V. Application in Solid-Phase Synthesis
- **VI. Conclusions**

Methods of Asymmetric Synthesis

1. Substrate-Controlled

2. Auxiliary-Controlled

3. Reagent-Controlled

4. Catalyst-Controlled

General Scheme for Auxiliary-Controlled Methods

A chiral auxiliary can be on either nucleophiles or electrophiles.

Preparation of Chiral Sulfoxides

1. Asymmetric Oxidation

2. Asymmetric Synthesis (Nucleophilic Substitution on Chiral Sulfur)

Asymmetric Diels-Alder Reaction Using Chiral Sulfoxides

Takahashi, T.; Kotsubo, H.; oizumi, T. *Tetrahedron Asymmetry* **1991**, *2*, 1035-1039. Arai, Y.; Hayashi, Y.; Yamanoto, M.; Takayema, H.; Koizumi, T. *J. Chem. Soc. Perkin Trans. 1* **1988**, 3133-3141. Alonso, Ines.; Carrentero, J. C.; Ruano, J. L. G. *J. Org. Chem.* **1994**, *59*, 1499-1508

Asymmetric Aldol Reaction Using Chiral Sulfoxides

Solladie, G.; Bauder, C.; Arce-Dubois, E.; Pasturel-Jacope, Y. *Tetrahedron Lett.* **2001**, *42*, 2923-2925. Solladie, G.; Hamdouchi, C. *Synthesis* **1991**, 979-982.

Asymmetric Michael Additions Using Chiral Sulfoxides

Posner, G. H. *Acc. Chem Res.* **1987**, *20*, 72-78. Iwata, C.; Fujita, M.; Hattori, K.; Uchide, S.; Imanishi, T. *Tetrahedron Lett.* **1985**, 26, 2221-2224. ** Carreno, M. C. *Chem. Rev.* **1995**, *95*, 1717-1760.

Catalytic Cycle of the Heck Reaction

$$Pd(OAc)_2 + 2L + HOAc$$

Entry	Х	R	A:B ratio	Yield, %
1	0	Ph	77:23	68
2	0	$2,4\text{-}Me_2C_6H_3$	78:22	80
3	0	o-(MeO)C ₆ H ₄	75:25	47
4	0	$o-(Me_2N)C_6H_4$	6:94	80
5	0	<i>t</i> -Bu	_a	-
6	CH_2	<i>p</i> -Tol	60:40	62
7	CH_2	<i>t</i> -Bu	_a	-
8	CH_2	$o-(Me_2N)C_6H_4$	8:92	76

a. Complex mixture of products.

Buezo, N. D.; Alonso, I.; Carretero, J. C. *J. Am. Chem. Soc.* **1998**, *120*, 7129-7130. Buezo, N. D.; Rosa, J. C.; Priego, J.; Alonso, I.; Carretero, J. C. *Chem. Eur. J.* **2001**, *7*, 3890-3900.

Mechanistic Hypothesis for the stereoselectivity of the Heck Reaction

Buezo, N. D.; Alonso, I.; Carretero, J. C. *J. Am. Chem. Soc.* **1998**, *120*, 7129-7130. Buezo, N. D.; Rosa, J. C.; Priego, J.; Alonso, I.; Carretero, J. C. *Chem. Eur. J.* **2001**, *7*, 3890-3900.

Second Heck Reaction of α , β -Unsaturated Sulfoxides with lodoarenes

Double Heck Reaction of α , β -Unsaturated Sulfoxides with lodobenzene

Buezo, N. D.; Alonso, I.; Carretero, J. C. *J. Am. Chem. Soc.* **1998**, *120*, 7129-7130. Buezo, N. D.; Rosa, J. C.; Priego, J.; Alonso, I.; Carretero, J. C. *Chem. Eur. J.* **2001**, *7*, 3890-3900.

-0

Ph

...... S

'Ar

Ph

Ο

0

Ar

Ph

Raney Ni EtOH

1) mCPBA

2) Pd(acac)₂, ⁱPrMgBr

Pd(acac)₂, ^{*i*}PrMgBr

Ph.

'Ph

Ph

Ph

90% ee 55% yield

94% ee

77% yield

Ph,

96% ee

90% yield

Ar

83%

76%

81%

Ph

Ph,

0

S'''''

Double Heck

reaction

Ar

Phl

PhI (excess)

dppp, Ag_2CO_3

Pd(OAc)₂

Pd(OAc)₂

dppp, Ag_2CO_3

Enantioselective Synthesis of Aryl-Substituted Five-Membered Ring

Buezo, N. D.; Rosa, J. C.; Priego, J.; Alonso, I.; Carretero, J. C. Chem. Eur. J. 2001, 7, 3890-3900.

Asymmetric Intramolecular Heck Reaction Using α , β -Unsaturated Sulfoxides

Buezo, N. D.; Mancheno, O. G.; Carretero, J. C. Org. Lett. 2000, 2, 1451-1454

Preparation of Enantiomerically Pure Sulfinimines

Yang, T.-K.; Chen, R.-Y.; Lee, D.-S.; Peng, W.-S.; Jiang, Y.-Z.; Mi, A.-Q.; Jong, T.-T. *J. Org. Chem.* **1994**, *59*, 914-921. Davis, F. A,; Reddy, R. T.; Han, W.; Reddy, R. E. *Pure Appl. Chem.* **1993**, *65*, 633-640. Davis, F. A,; Reddy, R. T.; Reddy, R. E. *J. Org. Chem.* **1992**, *57*, 6387-6387.

Liu, G.; Cogan, D. A.; Ellman, J. A. *J. Am. Chem. Soc.* **1997**, *119*, 9913-9914. Cogan, D. A.; Ellman, J. A. *J. Am. Chem. Soc.* **1999**, *121*, 268-269.

Preparation of Enantiomerically Pure Sulfinimines

Hua, D. H.; Miao, S. W.; Chen, J. S.; Iguchi, S. *J. Org. Chem.* **1991**, *56*, 4-6.
Davis, F. A.; Reddy, R. E.; Szewczyk, J. M.; Portonovo, P. S. *Tetrahedron Lett.* **1993**, *34*, 6229-6232.
Garcia Ruano, J. L.; Fernandez, I.; Prado Catalina, M. D.; Cruz, A. A. *Tetrahedron: Asymmetry* **1996**, *7*, 3407-3414.

Asymmetric Synthesis of α -Branched Amines - Method I

Yang, T.-K.; Chen, R.-Y.; Lee, D.-S.; Peng, W.-S.; Jiang, Y.-Z.; Mi, A.-Q.; Jong, T.-T. J. Org. Chem. 1994, 59, 914-921.

Reactions of Sulfinimines and Grignard Reagents

Entry D ¹			Sulfinamide		Amine	
Entry	К		Yield, %	% de	Yield, %	% ee
1	(CH ₃) ₃ CCH ₂	CH ₂ =CHCH ₂ MgBr	96	> 98	80	99
2	(CH ₃) ₃ CCH ₂	CH₃MgI	96	> 97	56	> 99
3	(CH ₃) ₃ CCH ₂	t-C₄H₀MgBr	60	> 98	80	> 98
4	PhCH₂	CH ₂ =CHCH ₂ MgBr	84	> 98	80	> 98
5	PhCH₂	CH₃MgI	84	> 98	-	-
6	PhCH ₂	t-C₄H ₉ MgBr	50	> 98	-	-

Yang, T.-K.; Chen, R.-Y.; Lee, D.-S.; Peng, W.-S.; Jiang, Y.-Z.; Mi, A.-Q.; Jong, T.-T. J. Org. Chem. **1994**, 59, 914-921.

Asymmetric Synthesis of α -Branched Amines -- Method II

Entry			Sulfinar	nide	Amine	
	ĸ	R	Yield, %	dr	Yield, %	Config.
1	Et	Ме	96	93:7	97	S
2	Et	i-Pr	97	92:8	92	R
3	Et	Ph	100	96:4	90	R
4	i-Pr	Ме	99	98:2	97	S
5	i-Pr	Et	100	97:3	93	S
6	i-Pr	Ph	98	89:11	91	R
7	Ph	Ме	96	97:3	88	S
8	Ph	Et	98	92:8	94	S

Liu, G.; Cogan, D. A.; Ellman, J. A. J. Am. Chem. Soc. 1997, 119, 9913-9914.

Asymmetric Synthesis of α -Branched Amines - Method III

$$p-\text{MeC}_{6}H_{4}^{\text{MeC}} \stackrel{R}{\longrightarrow} N \xrightarrow{R} Ph \xrightarrow{[H]} THF, -30 \text{ or } 25 \text{ °C} \xrightarrow{P-\text{MeC}} P_{6}H_{4}^{\text{MeC}} \stackrel{R}{\longrightarrow} N \xrightarrow{R} Ph \xrightarrow{HCI} H_{H_{2}N} \xrightarrow{R} H_{2$$

• R = Me, Et, *n*-Bu

- •DIBAL or LiAIH₂(OMe)₂: 88-92% de, 90-96% yield.
- Optically pure amine then easily obtained from column chromatography with high yield.
- LiAlH₄ and NaBH₄ gave lower optical yield.

Annuniziata, R.; Cinqini, M.; Cozzi, F. *J. Chem. Soc., Perkin Trans.* **1 1982**, 339-343. Hua, D. H.; Miao, S. W.; Chen, J. S.; Iguchi, S. *J. Org. Chem.* **1991**, *56*, 4-6.

Asymmetric Synthesis of α , α -Dibranched Amines

Entry	R^1	R^2	R^3	Me ₃ AI (eq.)	Config.	Yield, %	dr
1	Ме	i-Pr	Ph	0	R	65	94:6
2	Ме	i-Pr	Ph	1.1	R	93	97:3
3	Ме	Ph	Bu	0	S	26	99:1
4	Ме	Ph	Bu	1.1	S	86	98:2
5	Ме	Bu	Ph	0	R	67	63:37
6	Ме	Bu	Ph	1.1	R	93	89:11
7	Bu	Ph	Ме	1.1	R	Quant.	99:1
8	Ме	i-Pr	Bu	1.1	S	61	99:1
9	Bu	i-Pr	Ме	0	R	54	82:18
10	Bu	i-Pr	Ме	1.1	R	82	91:9

Cogan, D. A.; Ellman, J. A. J. Am. Chem. Soc. 1999, 121, 268-269.

Proposed Model Consistent with Observed Stereoselection

** First general method for the asymmetric synthesis of chiral acyclic α , α -dibranched amines.

Cogan, D. A.; Ellman, J. A. J. Am. Chem. Soc. 1999, 121, 268-269.

Davis, F. A.; Portonovo, P. S.; Reddy, R. E.; Chiu, Y. *J. Org. Chem.* **1996**, *61*, 440-441. Davis, F. A.; Lee, S.; Zhang, H.; Fanelle, D. L. *J. Org. Chem.* **2000**, *65*, 8704-8708.

Asymmetric Synthesis of α -Amino Acids - Method II

Hua, D. H.; Lagneau, N.; Wang, H.; Chen, J. Tetrahedron: Asymmetry 1995, 6, 349-352.

Asymmetric Synthesis of β-Amino Acids - Method I

Hua, D. H.; Miao, S. W.; Chen, J. S.; Iguchi, S. J. Org. Chem. 1991, 56, 4-6.

Asymmetric Synthesis of β -Amino Acids - Method II

Davis, F. A,; Reddy, R. T.; Reddy, R. E. J. Org. Chem. 1992, 57, 6387-6389.

Entry	R^1	R^2	Yield, %	dr
1	Ме	Н	94	99:1
2	i-Pr	Н	85	98:2
3	i-Bu	Н	80	98:2
4	Ph	Н	90	98:2
5	3-Pyr.	Н	70	95:5
6	i-Pr	Ме	85	99:1
7	Ph	Ме	89	98:2

Tang, T. P.; Ellman, J. A. J. Org. Chem. 1999, 64, 12-13.

Davis, F. A.; Zhou, P.; Reddy, G. V. *J. Org. Chem.* **1994**, *59*, 3243-3245. Davis, F. A.; Zhou, P. *Tetrahedron Lett.* **1994**, *35*, 7525-7528.

Asymmetric Synthesis of α -Alkyl- β -Amino Acids Using Aziridines

Davis, F. A.; Zhou, P. *Tetrahedron Lett.* **1994**, *35*, 7525-7528. Davis, F. A.; Reddy, G. V.; Liang, C.-H. *Tetrahedron Lett.* **1997**, *35*, 5139-5142. Tanner, D.; Gautn, O. R. *Tetrahedron* **1995**, *51*, 8279-8288.

Lefebvre, I M.; Evans, S. A. *J. Org. Chem.* **1997**, *62*, 7532-7533. Smith, A. B., III Yager, K. M.; Taylor, C. M. *J. Am. Chem. Soc.* **1995**, *117*, 10879-10880.

Asymmetric Synthesis of β-Aminophosphonic Acids

Chiral Intermediates for Synthesis of Important Amine Derivatives

Synthesis of a Support-Bound *tert*-Butanesulfinamide

Dragoli, D. R.; Burdett, M. T.; Ellman, J. A. J. Am. Chem. Soc. 2001, 123, 10127-10128.

Solid-Phase Synthesis of α -Branched Amines

Entry	R	Yield, %	dr
1	<i>i</i> -Pr	95	97:3 (97:3)
2	Ph	95	88:12 (92:8)
3	Bn	90	89:11 (92:8)
4	<i>p</i> MeOPh	95	96:4 (99:1)

Note: Numbers in parentheses represent solution-phase results.

Dragoli, D. R.; Burdett, M. T.; Ellman, J. A. J. Am. Chem. Soc. 2001, 123, 10127-10128.

Pomeranz-Fritsch Synthesis of Pavine and Isopavine Alkaloids

 \mathbb{R}^2

 R^1

.s=0

Ö

Pavine classes of alkaloids

Isopavine classes of alkaloids

Dragoli, D. R.; Burdett, M. T.; Ellman, J. A. J. Am. Chem. Soc. 2001, 123, 10127-10128.

Solid-Phase Pomeranz-Fritsch Synthesis of Pavine and Isopavine Alkaloids

Dragoli, D. R.; Burdett, M. T.; Ellman, J. A. J. Am. Chem. Soc. 2001, 123, 10127-10128.

Solid-Phase Pomeranz-Fritsch Synthesis of Pavine and Isopavine Alkaloids

Dragoli, D. R.; Burdett, M. T.; Ellman, J. A. J. Am. Chem. Soc. 2001, 123, 10127-10128.

Synthesis of Polymer-Bound Chiral 3-Phenyl β-Alanine Building Block

Lee, Y.; Silverman, R. B. Org. Letter 2000, 3, 303-306.

Solid-Phase Synthesis of Chiral 3-Aryl β-Amino Acid Containing Peptides

Lee, Y.; Silverman, R. B. Org. Letter 2000, 3, 303-306.

Conclusions

- Chiral sulfoxides have been used in a variety of stereoselective carbon-carbon bondforming reactions, such as Aldol reaction, Diels-Alder reaction and Michael additions.
- Chiral sulfoxides can be used in asymmetric Heck reaction as stereochemical controllers, by the coordination of Pd to an amino group tethered to the sulfoxides, rather than by direct steric control. This chiral auxiliary-based procedure constitutes an alternative to the use of chiral bidentate ligands in asymmetric Heck reaction.
- Sulfinimines are being utilized as versatile chiral nitrogen intermediates for the preparation of a range of chiral amines, including α -branched and α , α -dibranched amines, α and β -amino acids, aziridines and α and β -amino phosphonic acids.
- Solid-phase asymmetric synthesis of amine and amino acid containing molecules has also been studied. These studies should provide for the generation of combinatorial libraries.

Preparation of Chiral Sulfoxides

1. Asymmetric Oxidation

2. Asymmetric Synthesis (Nucleophilic Substitution on Chiral Sulfur)

Asymmetric Iminolysis of Sulfinates

Garcia Ruano, J. L.; Fernandez, I.; Prado Catalina, M. D.; Cruz, A. A. *Tetrahedron: Asymmetry* **1996**, *7*, 3407-3414.

Attempted Enantioselective Synthesis of α , β -Unsaturated Sulfoxides by Asymmetric Oxidation

Ar = o-(Me₂N)C₆H₄

Buezo, N. D.; Alonso, I.; Carretero, J. C. *J. Am. Chem. Soc.* **1998**, *120*, 7129-7130. Buezo, N. D.; Rosa, J. C.; Priego, J.; Alonso, I.; Carretero, J. C. *Chem. Eur. J.* **2001**, *7*, 3890-3900.

Asymmetric Synthesis of α , β -Unsaturated Sulfoxides Using Enantiomerically Pure Sulfoxides

Buezo, N. D.; Rosa, J. C.; Priego, J.; Alonso, I.; Carretero, J. C. Chem. Eur. J. 2001, 7, 3890-3900.

Asymmetric Synthesis of α , α -Dibranched Amines

Condensations of Ketones with Sulfinamide

Entry	R^1	R^2	Yield, %	(<i>E</i> : <i>Z</i>)
1	Ме	i-Pr	84	One isomer
2	Ме	Ph	87	One isomer
3	Bu	i-Pr	66	One isomer
4	Bu	Ph	77	One isomer
5	Ме	Bu	77	5:1

Cogan, D. A.; Ellman, J. A. J. Am. Chem. Soc. 1999, 121, 268-269.

Pummerer Rearrangement

Marino, J. P.; Pradilla, R. F.; Laborde, E. Synthesis 1987, 1088-1092.

** Carreno, M. C. Chem. Rev. 1995, 95, 1717-1760.

Tang, T. P.; Ellman, J. A. J. Org. Chem. 1999, 64, 12-13.

Zimmerman-Traxler Transition State

Tang, T. P.; Ellman, J. A. J. Org. Chem. 1999, 64, 12-13.

Asymmetric Synthesis of Aziridines and Its Application

Davis, F. A.; Zhou, P. *Tetrahedron Lett.* **1994**, *35*, 7525-7528. Davis, F. A,; Zhou, P.; Reddy, G. V. J. Org. Chem. **1994**, *59*, 3243-3245.

Asymmetric Synthesis of β -Amino Acids - Method III

Fujisawa, T.; Kooriyama, Y.; Shimizu, M. Tetrahedron Lett. 1996, 37, 3881-3884.

Asymmetric Synthesis Using Sulfinimines

- 1) α -Branched Amines α, α -Dibranched Amines
- 2) α -Amino Acids β -Amino Acids
- 3) Aziridine Derivatives
- 4) α-Amino Phosphonic acids β-Amino Phosphonic acids